Exercise 67

Find a second-degree polynomial P such that $P(2)=5, P^{\prime}(2)=3$, and $P^{\prime \prime}(2)=2$.

Solution

The general form of a second-degree polynomial is

$$
P(x)=a x^{2}+b x+c .
$$

Its first derivative is

$$
P^{\prime}(x)=2 a x+b,
$$

and its second derivative is

$$
P^{\prime \prime}(x)=2 a \text {. }
$$

Use the given formulas to obtain a system of equations for the unknowns, a and b and c.

$$
\begin{aligned}
P(2) & =a(2)^{2}+b(2)+c=5 \\
P^{\prime}(2) & =2 a(2)+b=3 \\
P^{\prime \prime}(2) & =2 a=2
\end{aligned}
$$

Simplify the system

$$
\begin{aligned}
4 a+2 b+c & =5 \\
4 a+b & =3 \\
2 a & =2
\end{aligned}
$$

and then solve it.

$$
a=1 \quad b=-1 \quad c=3
$$

Therefore, the second-degree polynomial is

$$
P(x)=x^{2}-x+3 .
$$

